Quote:
In a graduating class, the difference between the highest and lowest salaries is $100,000. The median salary is $50,000 higher than the lowest salary and the average salary is $20,000 higher than the median. What is the minimum number of students in the class?
A)10
B)12
C)15
D)20
E)25
Responding to a pm:
You need to understand the concepts of mean, median and range very well to do this question. Since you asked me to resolve it, I am assuming that you are comfortable with these stats concepts I have discussed on my blog. Here is the logical solution:
"the difference between the highest and lowest salaries is $100,000."
So there are at least 2 people - say one with salary 0 and the other with 100k. No salary will be outside this range.
Median = 50k more than lowest. So median is right in the center of lowest and highest since lowest and highest differ by 100k. In our example, median = 50k. Since there are more than 2 people, there would probably be a person at 50k.
Mean = 20k more than median so in our example, mean salary = 70k
On the number line,
0........50k (median)........100k
Mean = 70k
So there must be people more toward 100k to bring the mean up to 70k. Since we want to add minimum people, we will add people at 100k to quickly make up the right side deficit.
0 and 50k are (70k + 20k) = 90k away from 70k. 100k is 30k away from 70k. To bring the mean to 70k, we will add two people at 100k each to get:
0....50k.....100k, 100k, 100k
But when we add more people to the right of 70k, the median will shift to the right. We need to keep the median at 50k. So every time we add people to the right of 70k, we need to add people at 50k too to balance the median. 50k is 20k less than 70k while 100k is 30k more than 70k. To keep the mean same, we need to add 2 people at 100k for every 3 people we add at 50k. So if we add 3 people at 50k and 2 people at 100k, we get:
0, ... 50k, 50k, 50k, 50k, ... 100k, 100k, 100k, 100k, 100k
the median is not at 50k yet.
Add another 3 people at 50k and another 2 at 100k to get
0, 50k, 50k, 50k, 50k, 50k, 50k, 50k, 100k, 100k, 100k, 100k, 100k, 100k, 100k
Now the median is 50k and mean is 70k.
Total number of people is 15.
Answer (C)
I did not understand how 0k and 50k are 90k away from 70k, could you please help in clearing this doubt?